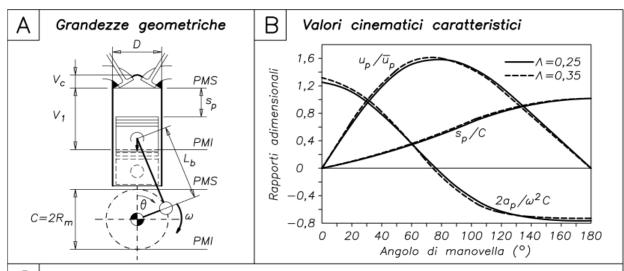
MOTORI A COMBUSTIONE INTERNA

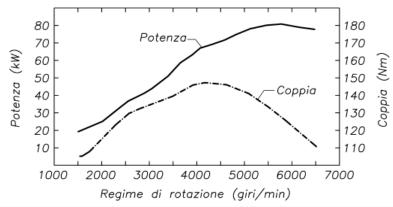
MONOCILINDRICO CICLO OTTO			4 CILINDRI CIO	4 CILINDRI CICLO OTTO					
V1	40 cm3	}	V1	400	cm3				
C/D	0,7		C/D	0,8					
D	4,175 cm		D	8,604	cm				
С	2,923 cm		С	6,883	cm				
Rapporto vol. compressione		10	Rapporto vol.	Rapporto vol. compressione		10			
Vc	4,444 cm3	,	Vc	44,444	cm3				
n	60 giri/	min 3600 giri/min	n	100	giri/min	6000 giri/min			
vp	3,507 m/s		vp	13,766	m/s				
pme	1 Mpa	3	pme	1	Мра				
motore 4 tempi			motore 4 tem	motore 4 tempi					
epsilon	2		epsilon	2					
cilindri	1		cilindri	4					
Vtot	40 cm3	1	Vtot	1600	cm3				
Peff	1200 w		Peff	80000	W				
	1,2 Kw			80	Kw				
Meff	3,185 Nm		Meff	127,389	Nm				
Portata combustibile mc 0,163 g/s		<mark>0,163</mark> g/s	Portata combi	Portata combustibile mc		g/s			
Consumo specifico	Csc	487,5 g/kWh	Consumo spec	cifico csc	234	g/kWh			
Pci benzina	44 MJ/l	kg	Pci benzina	44	MJ/kg				
rendimento g	0,168	16,78 %	rendimento gl	0,350	34,97	%			

NB: non conviene far lavorare un gruppo elettrogeno per troppo tempo oltre il 70% della sua potenza nominale. Quindi è meglio sempre sovradimensionare un bel po' la potenza fornita, rispetto a quella necessaria.

Potenza sfruttabile 70%	840 w	Potenza sfruttabile 70%	56000 w
Rendimento alternatore ele	0,98	Rendimento alternatore elet.	0,98
Rendimento meccanico	0,95	Rendimento meccanico	0,95
Potenza effettiva elettrica	782,04 w	Potenza effettiva elettrica	52136 w

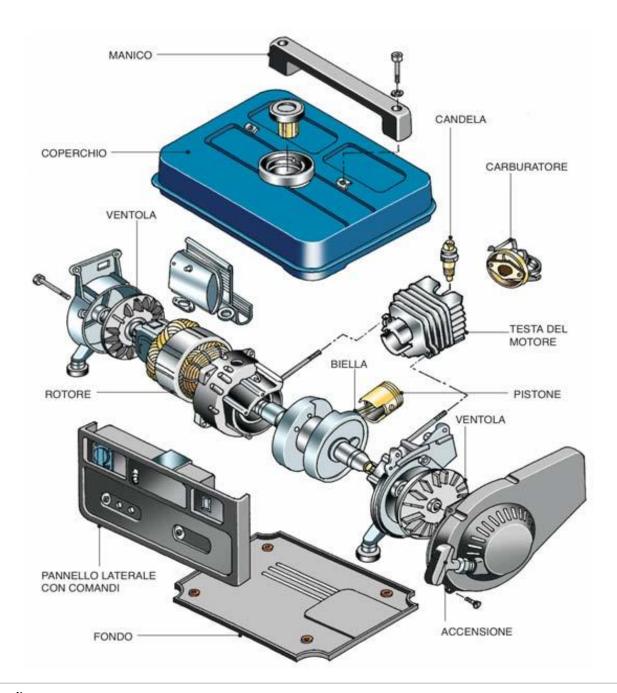

CALCOLO PRESTAZIONI

Grandezze geometriche e cinematiche. Le principali grandezze geometriche (fig. A): alesaggio (D), corsa (C) e cilindrata unitaria (V_1) sono legate tra loro dalla relazione: $V_1 = \pi D^2 C/4$. Fissato per esempio $V_1 = 400 \,\mathrm{cm}^3$ e il rapporto C/D (= 0,8: vedi tab. D) si ricavano D e C (o viceversa): $D = \sqrt[3]{4V_1/\pi}(C/D)$ $= \sqrt[3]{4 \times 400/(\pi \times 0.8)} = 8.6 \,\mathrm{cm} = 86 \,\mathrm{mm}$, da cui: $C \cong 69 \,\mathrm{mm}$. Essendo il rapporto volumetrico di compressione: $r = (V_1 + V_c)/V_c$, assunto per esempio r =10, si calcola il volume della camera di combustione: $V_c = V_1/(r-1) = 400/9$ = 44.4 cm³. Lo spostamento del pistone dal PMS è funzione del rapporto tra il raggio di manovella R_m e la lunghezza della biella L_b ($\Lambda = R_m/L_b$) e dell'angolo θ : $s_p = C/2(1+1/\Lambda-\cos\theta-1/\Lambda\sqrt{1}-\Lambda^2\sin^2\theta)$. Se si ritiene Λ^2 trascurabile, velocità u_p e accelerazione a_p del pistone si possono calcolare con le seguenti espressioni approssimate: $u_p \simeq \overline{u}_p \pi/2 \ (\sin \theta + \Lambda/2 \sin 2\theta)$ e $a_p \cong \omega^2 C/2(\cos \theta + \Lambda \cos 2\theta)$. I valori di: s_p/C , u_p/\overline{u}_p e $2a_p/\omega^2 C$ sono riportati in figura B in funzione di θ per i due tipici valori $\Lambda = 0.25$ e $\Lambda = 0.30$. Un parametro molto usato è la velocità media \overline{u}_p del pistone in un giro completo di manovella: $\overline{u}_p = 2Cn$. Per contenere le forze d'inerzia e le perdite fluidodinamiche, \overline{u}_p è limitata nell'intervallo: 5-20 m/s, con i valori tipici per le varie categorie di motori riportati nella tabella D. Nell'esempio in esame ($C = 69 \,\mathrm{mm} = 0.069 \,\mathrm{m}$), assunto $n = 100 \,\mathrm{giri/s}$, si ha: $\overline{u}_p = 2Cn = 2 \times 0.069 \times 100 = 13.8 \,\mathrm{m/s}$, valore medio per un motore d'autovettura (tab. D).


Potenza e coppia. Sono le principali grandezze che definiscono le prestazioni di un motore. La potenza effettiva resa disponibile all'albero motore, a un dato regime, può essere prevista mediante la relazione: $P_e = p_{me}V_t \, n/\varepsilon$ che la esprime in funzione di: p_{me} (Pa) pressione media effettiva (= lavoro per unità di cilindrata e per ciclo): è un indice sintetico del ciclo di pressioni che si ha nel cilindro; V_t (m³) cilindrata totale: cilindrata unitaria V_1 per il numero dei cilindri; n (s⁻¹) regime di rotazione dell'albero motore, espresso in giri al secondo; ε numero di giri per ciclo: $\varepsilon = 2$ per motore 4 tempi, $\varepsilon = 1$ per 2 tempi. Supposto per esempio $V_1 = 400 \, \text{cm}^3$ per un 4 cilindri 4 tempi per autovettura ($V_t = 1\,600\,\text{cm}^3$), stimati sulla base della tabella D i valori medi: $p_{me} = 1\,\text{MPa}$ e $n = 6000\,\text{giri/min} = 100\,\text{giri/s}$, si può prevedere una potenza massima: $P_e = 1 \times 10^6 \times 1600 \times 10^{-6} \times 100/2 = 80\,000\,\text{W} = 80\,\text{kW}$.

La coppia effettiva è legata alla potenza dalla relazione: $M_e = P_e/\omega = P_e/2\pi n$; e quindi, nel caso precedente: $M_e = 80\,000/2\,\pi \times 100 = 127\,\mathrm{Nm}$. Coppia e potenza variano con n e con il carico. A piena ammissione, in funzione del regime di rotazione hanno l'andamento mostrato in figura C e costituiscono le prestazioni limite che il motore è in grado di fornire.

Consumo specifico di combustibile. Misura l'efficienza con cui un motore utilizza il combustibile per produrre potenza meccanica. È definito come rapporto tra la portata di combustibile bruciato \dot{m}_c e la potenza P_e prodotta e è legato al rendimento globale η_g e al potere calorifico inferiore del combustibile H_i tramite la relazione: $c_{sc} = \dot{m}_c/P_e = 1/\eta_g H_i$. Nella pratica c_{sc} , anziché in unità di misura SI (kg/J) si esprime di solito in (g/kWh). Tenuto allora presente che in 1 h ci sono 3600 s, nel caso in esame, supposto noto $\dot{m}_c = 5.2$ g/s, si ha: $c_{sc} = 5.2 \times 3600/80 = 234$ g/kWh. Assunto per la benzina $H_i = 44$ MJ/kg, a esso corrisponde un rendimento: $\eta_g = 3600/(234 \times 10^{-3} \times 44 \times 10^3) = 0.35 = 35\%$.


C Potenza e coppia

Parametri caratteristici di motori tipici per diversi campi d'applicazione

Tipo di motore	n (giri/s)	D (mm)	C/D	ū _p (m∕s)	r	P _{em} (MPa)	η _g (%)	(kW/dm³)
Motocicli:								
Otto 2 tempi	120÷160	45÷70	0,8÷1,0	16÷20	7÷9	0,7÷1,0	25÷30	100÷200
Otto 4 tempi	100÷160	50÷80	0,7÷0,9	15÷18	9÷11	0,9÷1,1	30÷35	70÷100
Gruppi mobili:								
Otto 2 tempi	100÷140	40÷70	0,8÷1,0	14÷18	6÷8	0,6÷0,8	20÷30	60÷100
Diesel 4 tempi	70÷80	70÷90	0,9÷1,1	10÷14	18÷21	0,7÷0,9	30÷40	30÷50
Autovetture:								
Otto 4 tempi	90÷110	70÷100	0,8÷1,0	11÷16	9÷11	0,8÷1,2	30÷38	40÷70
Diesel 4 tempi	70÷80	80÷100	1,0÷1,1	11÷13	20÷23	0,7÷1,4	35÷42	25÷35
Trasporto:								
Diesel 4 t. asp.	35÷45	90÷130	1,0÷1,2	9÷13	17÷20	0,7÷0,9	36÷44	16÷20
Diesel 4 t. sovr.	35÷40	90÷140	1,1÷1,3	9÷13	16÷17	1,1÷1,4	40÷48	20÷25
Media velocita':								
Diesel 4 t. sovr.	10÷30	150÷400	1,1÷1,4	8÷11	15÷16	1,5÷2,2	45÷50	10÷22
Motori lenti:								
Diesel 2 t. sovr.	1,2÷2,4	550÷850	2,0÷3,6	6÷8	13÷15	1,6÷1,8	50÷55	2÷5

GRUPPO ELETTROGENO

Tipo di motore

I gruppi elettrogeni sono anche catalogati in base al carburante che utilizzano e quindi al tipo di motore che li equipaggia:

generatore di corrente 2 tempi generatore di corrente 4 tempi generatore di corrente diesel

Il generatore di corrente <u>a benzina è il più diffuso</u>, tenendo conto che quello a 2 tempi risulta il più piccolo e compatto, proprio per la minore complessità del motore; riesce a essere molto contenuto nelle dimensioni anche quello a 4 tempi, che solitamente è preferito perché alimentato solo con benzina, *produce minori emissioni nocive* e dispone di tagli di potenza erogata superiori: la potenza aumenta con il ventaglio disponibile di modelli a 4 tempi e ancor più con quelli a gasolio. Nel comparto dei 4 tempi ci sono anche quelli alimentati a *gas* (GPL, butano, propano) che hanno ulteriori vantaggi in termini di emissioni.